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Wave number selection in a nonequilibrium electro-osmotic instability
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Nonequilibrium electro-osmotic slip causes instability of quiescent ionic conductance through a diffusion
layer of a strong electrolyte at a charge selective solid such as ion-exchange membrane or electrode. This
instability, as inferred from the outer asymptotic limit of the full singularly perturbed ionic transport problem,
is of the short-wave type. This latter is a serious shortcoming of the limiting model. In this Brief Report we
show that inclusion in the model of the first asymptotic corrections yields a reasonable finite wavelength

selection.
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In Refs. [1,2] we reported a nonequilibrium electro- cly—y,=Co.Co=aleCy|y_y )23, 4
osmotic instability of quiescent ionic conductance through a 0 0
diffusion layer of a strong electrolyte at a charge selective 1 ,[Cxy
solid (ion-exchange electrodialysis membrane, electrode ”ly:yo:_gv o ' ®)
The short wavelength character of this instability represented Y ly=y
a serious shortcoming of the model. Indeed, the numerical W|y=yO=0_ (6)
solution showed that the nonlinearity selected the wave-
length (the average convective vortex sizen the length y=1.
scale of the diffusion layer thickness. Nevertheless, the re-
lated oscillations and noise may well have been due to the C|y:1:1’ (@)

ill-posedness of the model owing to the “short-wave catas- uly—1=0, 8
trophe.” This model was the leading order outer limit of the _
full singularly perturbed ionic transport problem. In this W|y:1_0- ©

Brief Report we show that consideration of the next order

corrections removes the short-wave catastrophe and yieldsr?errri’xlind% arr?{ rgzeeﬁtlvelg tihen::orcr)]rt;jrlnrz?t?s tla':iginitr']?l ;and
reasonable finite wavelength selection. ormal to the membrangy€0 is membrane/solutio er-

Concentration polarizatiofCP) is the electrochemical face andy=1 is the outer edge of the diffusion layeu and

term for a set of complex effects related to the formation of v are :he rttahspecl;tlvte cl:otrnponentstoft_the f[I:wdﬂ:/ elooinand
concentration gradients in electrolyte solution adjacent to g(x,y, ) is the electrolyte concentration. Furthermore,

permselectivelcharge selectivesolid/liquid interface upon RT\2 d

the passage of a direct electric current. The expression for CP Pe= (?) 477D (10
is a voltage/currentVC) curve with a typical nonlinearity:

initial Ohmic low polarization region followed by current s the electroconvective Peclet number and

saturation at the “limiting” current, corresponding to the

vanishing interface concentration followed, in turn, by in- Sc,=1 (12)

flexion of the VC curve and transition to the “overlimiting” D

conductance regime, accompanied by the appearance of the , ) .
low frequency excess electric noise. is the Schmidt number. HerRis the universal gas constant;

As shown in Refs.[1,2], the time dependent two- T is the absolute temperatur;is the Faraday numbed is
dimensional ion transfer in the locally electroneutral part of ain€ dielectric permittivity of the solutiony is the dynamic
diffusion layer of a univalent electrolyte at a cation exchange/iScosity; D is ionic diffusivity, assumed equal, for simplic-

membrane under developed CP conditions is described, iy: for both ions; andv is kinematic viscosityV is the volt-
terms of natural dimensionless variables, by the following?9€ applied to the diffusion layer, a control parameter in the

free boundary problerfouter problem in terms of the bound- Problem, and

ary layer analysis of the full singularly perturbed problem (dRT2
described in Refd.1,2]). & e (12
yo(x,t)<y<1,t>0. (7Co)
citPaVe=Ac,v=ui+wj, (1) is the dimensionless Debye lengtty (is the bulk electrolyte
concentration and is the diffusion layer thicknegsFor a
= —VD+A 2 realistic systeme is a small parameter in the range 10
s =~ VPtay, @ <e<10°°,
Vo=0 3 Finally, the free boundary

213
[(Cy|y=y0)_1/3_ 1] (13)

3
y=Yo(X1). YO(X,I)=(ZsV
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is the outer edge of the nonequilibrium extended spac¢hreshold, instability of steady state results in the develop-
charge regiorf2] anda is a positive constant of order one ment of a periodic sequence of pairs of symmetric steady

provided by the boundary layer analy$® as state vortices. The spatial period of the sequence, as selected
[F(0)]* by nonlinearity of the system, was independent of the wave-
a=2‘1’3\/——[F’(0)]2. (14)  length of the initial disturbance and roughly matched the

4 thickness of the diffusion layer. This period very slowly, if at
Here, F is a solution of the inhomogeneous Painleve equaf’,‘”' increaseq with the increase of voItage. Periodic oscilla-
tion of the second kind of the form tions of vortices began above a certain voltage threshold,
turning chaotic above another, still higher, threshold. These
Fzz=£F3— ZF+1, (15)  chaotic oscillations were interpreted in Ri#] as the mecha-

2 nism of the low frequency access electric noise in overlim-

iting region in electrodialysi$l]. Our recent numerical ex-
periments indicate that periodic and chaotic oscillations
O(E) 7o thresholdgbut not the spatial period of the vortex sequence
F(z)= z]’ (16) are space discretization dependent. Thus, they are, at least in
part, numerical artifacts, stemming from the possible math-
O \/__Z)’ Zo T ematical ill-posedness of the byp)—(3), (7)—(9), (17)—(19).
To the leading order i, the free boundary problef)— This ill-posedness might well be one of the mathematical

(9), Eq. (13) is reduced to the fixed boundary value problemexpressions of the short-wave instability of the quiescent

: . _ teady state.
for Egs. (1)—(3) with boundary conditiong7)—(9), y,=0, stead N . .
o : It is our purpose to show in this Brief Report that retain-
d bound ditiong@h)—(6 the f . . .
and boundary condition§})—(6) assuming the form ing the “small” termsy, andcg in Egs.(4)—(6) removes this

C|y:0:0* (17 short-wave “catastrophe” and yields a reasonable linear
1 ,[Cxy wavelength selection. Seeking a solution of the free bound-
U|y=0: - gV c_y ; (18) ary problem(1)—(9), Egs.(13) as a perturbation of the qui-
W|y:0. (19)

satisfying the matching conditions

y=0 escent stat€20), Eq. (21) of the form

. . . . Cl(y)l (23)
This leading order boundary value problébvp), studied in
Refs.[1,2], is singular in the sense that it yields a short-wave v=vo+ aeMe®v (y),v;=Uji+v4j, (24)
instability of the conduction state. Namely, the bip—(3), - o Ntaikx -7
(7)—(9), (17)—(19) possesses a trivial “limiting” steady state Yo=0+aete™y,, (25
guiescent concentration polarization solution

c=Cqo+ aeMe'®*

wherea<1 is a perturbation parameter, yields, upon linear-

Co(Y)=Y, (200 ization with respect tay, the spectral problem
= Ugi +Wgj=0. 21
Vo= ol +WoJ =0 @D Acy+Pav,;=cj—k%c;, 0<y<l1, (26)
Linear stability analysis of this solution yields monotonic A A
instability for voltages above the threshold value provided by wi—| 2K+ So/Wit K4+ So/W1=0. (27)
the marginal stability relatiopl,2]: G G
82/3 3 2/3
1 sinhk coshk—k €1(0)=—-|2a+ ZV) c1(0), (28)
§V2Pe=4 , 5 : (22)
sinhk coshk+k— 2k* coth k ¢,(1)=0, (29)
with k being the the perturbation wave number. A character- w1|y:0,1=0, (30
istic feature of the respective marginal stability cutliee 4 w!(1)=0 (31)
in Fig. 1) is a monotonic decrease of the threshold voltage ! '
towards the limiting value/.=4/2/Pe with the increasing (0)= — V—2k2 /(0 32
wave number[According to the linear stability analysis of w1(0)= 8 ¢1(0). (32)

Ref. [2], the linear growth rate of the perturbatian also

increases with wave number as= Pe/3v 2353+ O(k#3).]  Solution of Eqs(23)—(32) yields forA=0 the implicit mar-
Numerical solution of the full nonlinear limiting problem ginal stability relation between the threshold value of the
(1)—3), (7—(9), (17—(19 [2] has shown that near the control paramete¥ and the wave numbés of the form

2/3 3 2/3
sinhkcoshk—k+? 2a+ ZV) k(costtk— kcothk) V2
4 - =Pe—. (33
sinhk coshk+ k— 2k2cothk 8
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FIG. 1. Marginal stability curves in th&-k plane {/ is the
dimensionless voltage ards the dimensionless wave numpéor
different values of the dimensionless Debye length 1—¢
=10"% 2—e=10"° 3-¢=105, and 4-¢=0.

FIG. 2. Dependence of the dimensionless critical wave number
k. on the dimensionless Debye length

mum of the marginal stability curve is very close to the lim-
In Fig. 1 we present the respective marginal stability curvdting value 4y2/Pe.
for Pe=0.5 and three realistic values of, £=10"4, Note that the short-wave instability and the related flat-
10°°, and 10°®, as well ax =0, corresponding to the short- tening of the marginal stability curve for largeboth imply
wave instability. It is observed that far>0 all marginal the presence of length scales in the outer problem compa-
stability curves possess a minimum at the critical wave numrable to those of the boundary layer. This explains why keep-
ber k. in the range 5<k.<8. This corresponds to a spatial ing the small boundary layer contributions produced the first
period 2m/K. in the range 0.%2w/k.,<1.2, in qualitative significant term in the equation fd, and, thus, resulted in
agreement with the nonlinear numerical results of Refsremoving the short-wave catastrophe, an effect whose sig-
[1,2]. The only weak variation ok for & varying by orders nificance likely transcends the limits of the particular phe-
of magnitude is easily inferred from E(3). Indeed, taking nomenon addressed herein. This is similar to the effect of

the limit e—0 in the equation fok. we find surface tension in morphological instability in solidification
1 and Saffman-Taylor instability3—5], except that in our case
kcz§|lns|+0(|ln|ln(s)||) for e<1. (34 the regularization comes from the boundary layer. This is in

a way reminiscent of the viscous drag resolution of the
The full dependence df. on [In(¢)| is presented in Fig. 2. D’Alembert paradox in the high Reynolds number potential
The critical valueV, of the control parametey at the mini-  flow around a symmetric body.
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