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Wave number selection in a nonequilibrium electro-osmotic instability
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Nonequilibrium electro-osmotic slip causes instability of quiescent ionic conductance through a diffusion
layer of a strong electrolyte at a charge selective solid such as ion-exchange membrane or electrode. This
instability, as inferred from the outer asymptotic limit of the full singularly perturbed ionic transport problem,
is of the short-wave type. This latter is a serious shortcoming of the limiting model. In this Brief Report we
show that inclusion in the model of the first asymptotic corrections yields a reasonable finite wavelength
selection.
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In Refs. @1,2# we reported a nonequilibrium electro
osmotic instability of quiescent ionic conductance throug
diffusion layer of a strong electrolyte at a charge select
solid ~ion-exchange electrodialysis membrane, electrod!.
The short wavelength character of this instability represen
a serious shortcoming of the model. Indeed, the numer
solution showed that the nonlinearity selected the wa
length ~the average convective vortex size! on the length
scale of the diffusion layer thickness. Nevertheless, the
lated oscillations and noise may well have been due to
ill-posedness of the model owing to the ‘‘short-wave cat
trophe.’’ This model was the leading order outer limit of th
full singularly perturbed ionic transport problem. In th
Brief Report we show that consideration of the next ord
corrections removes the short-wave catastrophe and yie
reasonable finite wavelength selection.

Concentration polarization~CP! is the electrochemica
term for a set of complex effects related to the formation
concentration gradients in electrolyte solution adjacent t
permselective~charge selective! solid/liquid interface upon
the passage of a direct electric current. The expression fo
is a voltage/current~VC! curve with a typical nonlinearity:
initial Ohmic low polarization region followed by curren
saturation at the ‘‘limiting’’ current, corresponding to th
vanishing interface concentration followed, in turn, by i
flexion of the VC curve and transition to the ‘‘overlimiting
conductance regime, accompanied by the appearance o
low frequency excess electric noise.

As shown in Refs. @1,2#, the time dependent two
dimensional ion transfer in the locally electroneutral part o
diffusion layer of a univalent electrolyte at a cation exchan
membrane under developed CP conditions is described
terms of natural dimensionless variables, by the follow
free boundary problem~outer problem in terms of the bound
ary layer analysis of the full singularly perturbed proble
described in Refs.@1,2#!.

y0(x,t),y,1, t.0.
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cuy5151, ~7!

uuy5150, ~8!
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Here,x andy are, respectively, the coordinates tangential a
normal to the membrane (y50 is membrane/solution inter
face andy51 is the outer edge of the diffusion layer!, u and
w are the respective components of the fluid velocityv, and
c(x,y,t) is the electrolyte concentration. Furthermore,

Pe5S RT

F D 2 d

4phD
~10!

is the electroconvective Peclet number and

Sc5
n

D
~11!

is the Schmidt number. Here,R is the universal gas constan
T is the absolute temperature;F is the Faraday number;d is
the dielectric permittivity of the solution;h is the dynamic
viscosity;D is ionic diffusivity, assumed equal, for simplic
ity, for both ions; andn is kinematic viscosity.V is the volt-
age applied to the diffusion layer, a control parameter in
problem, and

«5
~dRT!1/2

2F~pc0!1/2d
~12!

is the dimensionless Debye length (c0 is the bulk electrolyte
concentration andd is the diffusion layer thickness!. For a
realistic system« is a small parameter in the range 1024

,«,1026.
Finally, the free boundary

y0~x,t !5S 3

4
«VD 2/3

@~cyuy5y0
!21/321# ~13!
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is the outer edge of the nonequilibrium extended sp
charge region@2# and a is a positive constant of order on
provided by the boundary layer analysis@2# as

a5221/3A@F~0!#4

4
2@F8~0!#2. ~14!

Here,F is a solution of the inhomogeneous Painleve eq
tion of the second kind of the form

Fzz5
1

2
F32zF11, ~15!

satisfying the matching conditions

F~z!5H OS 1

zD , z→`

O~A2z!, z→2`.

~16!

To the leading order in«, the free boundary problem~1!–
~9!, Eq. ~13! is reduced to the fixed boundary value proble
for Eqs. ~1!–~3! with boundary conditions~7!–~9!, y050,
and boundary conditions~4!–~6! assuming the form

cuy5050, ~17!

uuy5052
1

8
V2S cxy

cy
D U

y50

, ~18!

wuy50. ~19!

This leading order boundary value problem~bvp!, studied in
Refs.@1,2#, is singular in the sense that it yields a short-wa
instability of the conduction state. Namely, the bvp~1!–~3!,
~7!–~9!, ~17!–~19! possesses a trivial ‘‘limiting’’ steady stat
quiescent concentration polarization solution

c0~y!5y, ~20!

v05u0i 1w0 j [0. ~21!

Linear stability analysis of this solution yields monoton
instability for voltages above the threshold value provided
the marginal stability relation@1,2#:

1

8
V2Pe54

sinhk coshk2k

sinhk coshk1k22k2 coth k
, ~22!

with k being the the perturbation wave number. A charac
istic feature of the respective marginal stability curve~line 4
in Fig. 1! is a monotonic decrease of the threshold volta
towards the limiting valueVc54A2/Pe with the increasing
wave number.@According to the linear stability analysis o
Ref. @2#, the linear growth rate of the perturbationl also
increases with wave number asl5Pe1/3V22/3k5/31O(k4/3).#
Numerical solution of the full nonlinear limiting problem
~1!–~3!, ~7!–~9!, ~17!–~19! @2# has shown that near th
03250
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threshold, instability of steady state results in the devel
ment of a periodic sequence of pairs of symmetric ste
state vortices. The spatial period of the sequence, as sele
by nonlinearity of the system, was independent of the wa
length of the initial disturbance and roughly matched t
thickness of the diffusion layer. This period very slowly, if
all, increased with the increase of voltage. Periodic osci
tions of vortices began above a certain voltage thresh
turning chaotic above another, still higher, threshold. Th
chaotic oscillations were interpreted in Ref.@2# as the mecha-
nism of the low frequency access electric noise in overli
iting region in electrodialysis@1#. Our recent numerical ex
periments indicate that periodic and chaotic oscillatio
thresholds~but not the spatial period of the vortex sequenc!
are space discretization dependent. Thus, they are, at lea
part, numerical artifacts, stemming from the possible ma
ematical ill-posedness of the bvp~1!–~3!, ~7!–~9!, ~17!–~19!.
This ill-posedness might well be one of the mathemati
expressions of the short-wave instability of the quiesc
steady state.

It is our purpose to show in this Brief Report that retai
ing the ‘‘small’’ termsy0 andc0 in Eqs.~4!–~6! removes this
short-wave ‘‘catastrophe’’ and yields a reasonable lin
wavelength selection. Seeking a solution of the free bou
ary problem~1!–~9!, Eqs.~13! as a perturbation of the qui
escent state~20!, Eq. ~21! of the form

c5c01aelteikxc1~y!, ~23!

v5v01aelteikxv1~y!,v15u1i 1v1 j , ~24!

y0501aelteikxy1 , ~25!

wherea!1 is a perturbation parameter, yields, upon line
ization with respect toa, the spectral problem

lc11Pew15c192k2c1 , 0,y,1, ~26!

w1
(4)2S 2k21

l

ScDw191S k41
l

ScDw150, ~27!

c1~0!5
«2/3

3 F2a1S 3

4
VD 2/3Gc18~0!, ~28!

c1~1!50, ~29!

w1uy50,150, ~30!

w19~1!50, ~31!

w18~0!52
V2

8
k2c18~0!. ~32!

Solution of Eqs.~23!–~32! yields for l50 the implicit mar-
ginal stability relation between the threshold value of t
control parameterV and the wave numberk of the form
4

sinhk coshk2k1
«2/3

3 F2a1S 3

4
VD 2/3Gk~cosh2k2kcothk!

sinhk coshk1k22k2cothk
5Pe

V2

8
. ~33!
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In Fig. 1 we present the respective marginal stability cu
for Pe50.5 and three realistic values of«, «51024,
1025, and 1026, as well as«50, corresponding to the shor
wave instability. It is observed that for«.0 all marginal
stability curves possess a minimum at the critical wave nu
ber kc in the range 5,kc,8. This corresponds to a spati
period 2p/kc in the range 0.7,2p/kc,1.2, in qualitative
agreement with the nonlinear numerical results of Re
@1,2#. The only weak variation ofkc for « varying by orders
of magnitude is easily inferred from Eq.~33!. Indeed, taking
the limit «→0 in the equation forkc we find

kc.
1

3
u ln «u1O„u lnu ln~«!uu… for «!1. ~34!

The full dependence ofkc on u ln(«)u is presented in Fig. 2
The critical valueVc of the control parameterV at the mini-

FIG. 1. Marginal stability curves in theV-k plane (V is the
dimensionless voltage andk is the dimensionless wave number! for
different values of the dimensionless Debye length«: 12«
51024, 22«51025, 32«51026, and 42«50.
ci.

03250
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mum of the marginal stability curve is very close to the lim
iting value 4A2/Pe.

Note that the short-wave instability and the related fl
tening of the marginal stability curve for largek both imply
the presence of length scales in the outer problem com
rable to those of the boundary layer. This explains why ke
ing the small boundary layer contributions produced the fi
significant term in the equation forkc and, thus, resulted in
removing the short-wave catastrophe, an effect whose
nificance likely transcends the limits of the particular ph
nomenon addressed herein. This is similar to the effec
surface tension in morphological instability in solidificatio
and Saffman-Taylor instability@3–5#, except that in our case
the regularization comes from the boundary layer. This is
a way reminiscent of the viscous drag resolution of t
D’Alembert paradox in the high Reynolds number potent
flow around a symmetric body.

FIG. 2. Dependence of the dimensionless critical wave num
kc on the dimensionless Debye length«.
nd
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